Title of dissertation : FACE RECOGNITION AND VERIFICATION IN UNCONSTRAINED ENVIRIONMENTS

نویسندگان

  • Huimin Guo
  • Larry S. Davis
  • Samir Khuller
چکیده

Title of dissertation: FACE RECOGNITION AND VERIFICATION IN UNCONSTRAINED ENVIRIONMENTS Huimin Guo Doctor of Philosophy, 2012 Dissertation directed by: Professor Larry S. Davis Department of Computer Science Face recognition has been a long standing problem in computer vision. General face recognition is challenging because of large appearance variability due to factors including pose, ambient lighting, expression, size of the face, age, and distance from the camera, etc. There are very accurate techniques to perform face recognition in controlled environments, especially when large numbers of samples are available for each face (individual). However, face identification under uncontrolled(unconstrained) environments or with limited training data is still an unsolved problem. There are two face recognition tasks: face identification (who is who in a probe face set, given a gallery face set) and face verification (same or not, given two faces). In this work, we study both face identification and verification in unconstrained environments. Firstly, we propose a face verification framework that combines Partial Least Squares (PLS) and the One-Shot similarity model[1]. The idea is to describe a face with a large feature set combining shape, texture and color information. PLS regression is applied to perform multi-channel feature weighting on this large feature set. Finally the PLS regression is used to compute the similarity score of an image pair by One-Shot learning (using a fixed negative set). Secondly, we study face identification with image sets, where the gallery and probe are sets of face images of an individual. We model a face set by its covariance matrix (COV) which is a natural 2nd-order statistic of a sample set.By exploring an efficient metric for the SPD matrices, i.e., Log-Euclidean Distance (LED), we derive a kernel function that explicitly maps the covariance matrix from the Riemannian manifold to Euclidean space. Then, discriminative learning is performed on the COV manifold: the learning aims to maximize the between-class COV distance and minimize the within-class COV distance. Sparse representation and dictionary learning have been widely used in face recognition, especially when large numbers of samples are available for each face (individual). Sparse coding is promising since it provides a more stable and discriminative face representation. In the last part of our work, we explore sparse coding and dictionary learning for face verification application. More specifically, in one approach, we apply sparse representations to face verification in two ways via a fix reference set as dictionary. In the other approach, we propose a dictionary learning framework with explicit pairwise constraints, which unifies the discriminative dictionary learning for pair matching (face verification) and classification (face recognition) problems. Face Recognition and Verification in Unconstrained Environments

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face Detection and Verification in Unconstrained Videos: Challenges, Detection, and Benchmark Evaluation

With increasing security concerns, surveillance cameras are playing an important role in the society and face recognition in crowd is gaining more importance than ever. For video face recognition, researchers have primarily focused on controlled environments with a single person in a frame. However, in real world surveillance situations, the environment is unconstrained and the videos are likel...

متن کامل

Face Detection with methods based on color by using Artificial Neural Network

The face Detection methodsis used in order to provide security. The mentioned methods problems are that it cannot be categorized because of the great differences and varieties in the face of individuals. In this paper, face Detection methods has been presented for overcoming upon these problems based on skin color datum. The researcher gathered a face database of 30 individuals consisting of ov...

متن کامل

Cross-Age LFW: A Database for Studying Cross-Age Face Recognition in Unconstrained Environments

Labeled Faces in the Wild (LFW) database has been widely utilized as the benchmark of unconstrained face verification and due to big data driven machine learning methods, the performance on the database approaches nearly 100%. However, we argue that this accuracy may be too optimistic because of some limiting factors. Besides different poses, illuminations, occlusions and expressions, crossage ...

متن کامل

3 D Face Recognition based on Deformation Invariant Image using Symbolic LDA

Face recognition is one of the most important abilities that the humans possess. There are several reasons for the growing interest in automated face recognition, including rising concerns for public security, the need for identity verification for physical and logical access to shared resources, and the need for face analysis and modeling techniques in multimedia data management and digital en...

متن کامل

On Hair Recognition in the Wild by Machine

We present an algorithm for identity verification using only information from the hair. Face recognition in the wild (i.e., unconstrained settings) is highly useful in a variety of applications, but performance suffers due to many factors, e.g., obscured face, lighting variation, extreme pose angle, and expression. It is well known that humans utilize hair for identification under many of these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012